GNSS signal raytracing

P. Hordyniec, W. Rohm, K. Wilgan

Wrocław University of Environmental and Life Sciences Institute of Geodesy and Geoinformatics

Outline

- Introduction
 - GNSS Slant Delay
 - Raytracing theory
- Raytracing computation
 - Solutions
 - Raytracing through NWP
 - Strategies
- Summary

GNSS Slant Delay

Total delay along the ray path:

$$\Delta \tau = \int n(s)ds - S = \underbrace{\int (n(s) - 1)ds}_{\text{slowing effect}} + \underbrace{\left(\int ds - S\right)}_{\text{bending}}$$

where s is path length, n is refractive index and S is straight-line length.

Slant Total Delay:

$$STD = SHD + SWD =$$

= $m_h(e)ZHD + m_w(e)ZWD$

Elements:

R-S between receiver and satellite

Az at given azimuth

e at given elevation angle

Raytracing theory

Mathematical model

- ray path length
- coordinates along the ray path
- signal bending in a function of refractive index

Meteorological data

- radiosonde profiles
- standard atmosphere
- Numerical Weather Prediction

Raytracing theory

Mathematical model

- ray path length
- coordinates along the ray path
- signal bending in a function of refractive index

Meteorological data

- radiosonde profiles
- standard atmosphere
- Numerical Weather Prediction

Mathematical model

Eikonal equation for geometric optics approximation (Born and Wolf, 1999):

$$\frac{d}{ds}\left(n\frac{d\vec{r}}{ds}\right) = \nabla n$$

 \vec{r} is a position vector

s is a ray trajectory length

n is a refractive index

 ∇n is a refractive gradient

Refractive index: $n = 1 + N \cdot 10^{-6}$

N is a total refractivity

Eikonal solver (3D)

the exact solution

$$\frac{d\vec{r}}{ds} = \frac{\vec{v}}{n(\vec{r})} \qquad \frac{d\vec{v}}{ds} = \nabla n(\vec{r})$$

- time-demanding processing
- requires small vertical spacing (1 m)
- calculation of refractivity and partial derivatives at each iteration:

$$\frac{\partial n(r,\lambda,\phi)}{\partial r}$$
, $\frac{\partial n(r,\lambda,\phi)}{\partial \phi}$, $\frac{\partial n(r,\lambda,\phi)}{\partial \lambda}$

where \vec{v} is tangent vector of trajectory at point \vec{r} , (r, λ, ϕ) are spherical coordinates

Thayer approach (2D)

approximate solution

$$\frac{n}{n_1} = \left(\frac{r}{R_1}\right)^A$$

- faster ray-tracing computation
- horizontally stratified atmosphere

$$rac{\partial \textit{n}(\textit{r},\lambda,\phi)}{\partial \phi} = 0, \quad rac{\partial \textit{n}(\textit{r},\lambda,\phi)}{\partial \lambda} = 0$$

- designed for non-zenith delays in azimuthal symmetry
- signal delay:

$$au_{i+1} = rac{R_i n_i cos heta_i}{1 + A_{i+1}} \left(tan heta_{i+1} - tan heta_i
ight)$$

Linear approach (2D)

based on Snell's law

$$n_i r_i \sin \theta_i = n_{i+1} r_{i+1} \sin \theta_{i+1}$$

- linear ray-path at constant azimuth
- fast calculation
- mean refractivity at half-heights
- signal delay:

$$\tau_{i+1} = \frac{\overline{n}_{i+1} - \overline{n}_i}{log\left(\frac{\overline{n}_{i+1} - 1}{\overline{n}_i - 1}\right)} \Delta s$$

where Δs is geometrical distance between two points

Meteorological data

Weather Research and Forecasting model (WRF)

- real and idealized data
- staggering Arakawa-C grid
- vertical grid spacing: altitude dependent
- upper limit ≈ 30 km
- 24 hours forecast
- runs at 0.00 UTC

Horizontal resolution:

- ocuntry-wide: 13 km
- local: 4 km

Meteorological data

Weather Research and Forecasting model (WRF)

- real and idealized data
- staggering Arakawa-C grid
- vertical grid spacing: altitude dependent
- upper limit ≈ 30 km
- 24 hours forecast
- runs at 0.00 UTC

Horizontal resolution:

- ocuntry-wide: 13 km
- local: 4 km

Reference system

METEOROLOGICAL DATA IN GEODETIC REFERENCE SYSTEM

COORDINATE SYSTEMS

- NWP in spherical coordinates (geocentric)
- processing in geodetic coordinates

HEIGHT SYSTEMS CONVERSION

- meteorological parameters at geopotential levels
- raytracing in geometric altitudes

$$h = \frac{\zeta \cdot g_0}{\overline{\gamma}(\phi, \lambda, H)} + \Lambda$$

EARTH RADIUS

Gaussian

$$R=rac{a^2b}{(acos\phi)^2+(bsin\phi)^2}$$

Euler formula

$$R = \left(\frac{\cos^2 a}{M} + \frac{\sin^2 a}{N}\right)^{-1}$$

osculating sphere

$$R = \frac{a\sqrt{1-e}}{1-e^2\sin^2\phi}$$

where $\overline{\gamma}(\phi,\lambda,H)$ is mean acceleration due to gravity g_0,N is geodetic undulation, ζ is geopotential height, e is ellipsoid eccentricity at semi-major axis a and semi-minor axis b

Reference system

METEOROLOGICAL DATA IN GEODETIC REFERENCE SYSTEM

COORDINATE SYSTEMS

- NWP in spherical coordinates (geocentric)
- processing in geodetic coordinates

HEIGHT SYSTEMS CONVERSION

- meteorological parameters at geopotential levels
- raytracing in geometric altitudes

$$h = \frac{\zeta \cdot g_0}{\overline{\gamma}(\phi, \lambda, H)} + N$$

where $\overline{\gamma}(\phi, \lambda, H)$ is mean acceleration due to gravity g_0 , N is geodetic undulation, ζ is geopotential height, e is ellipsoid eccentricity at semi-major axis a and semi-minor axis b

EARTH RADIUS

Gaussian

$$R=rac{a^2b}{(acos\phi)^2+(bsin\phi)^2}$$

Euler formula

$$R = \left(\frac{\cos^2 a}{M} + \frac{\sin^2 a}{N}\right)^{-1}$$

osculating sphere

$$R = \frac{a\sqrt{1-e}}{1-e^2\sin^2\phi}$$

Reference system

METEOROLOGICAL DATA IN GEODETIC REFERENCE SYSTEM

COORDINATE SYSTEMS

- NWP in spherical coordinates (geocentric)
- processing in geodetic coordinates

HEIGHT SYSTEMS CONVERSION

- meteorological parameters at geopotential levels
- raytracing in geometric altitudes

$$h = \frac{\zeta \cdot g_0}{\overline{\gamma}(\phi, \lambda, H)} + N$$

EARTH RADIUS

Gaussian

$$R = rac{a^2b}{(acos\phi)^2 + (bsin\phi)^2}$$

Euler formula

$$R = \left(\frac{\cos^2 a}{M} + \frac{\sin^2 a}{N}\right)^{-1}$$

osculating sphere

$$R = \frac{a\sqrt{1-e}}{1-e^2\sin^2\phi}$$

where $\overline{\gamma}(\phi, \lambda, H)$ is mean acceleration due to gravity g_0 , N is geodetic undulation, ζ is geopotential height, e is ellipsoid eccentricity at semi-major axis a and semi-minor axis b

Input parameters

refractivity coeffcient k_2'

$$k_2' = k_2 - k_1 \frac{M_W}{M_d}$$

Air temperature T

degrees conversion

Celsius $[{}^{\circ}C] \Longrightarrow \text{Kelvin [K]}$

Relative humidity RH Specific humidity Q

water vapor pressure

$$e = e_{s} \frac{RH}{100}$$
 $e = \frac{Q \cdot P}{0.622 + 0.3780}$

refractivity (refractive index)

$$N = k_1 \frac{P}{T} + k_2' \frac{e}{T} + k_3 \frac{e}{T^2} \Longrightarrow n = 1 + N \cdot 10^{-6}$$

where M_W and M_d are molar masses of wet and dry air, respectively 18.0152 and 28.9644 g/mol

Interpolation in NWP model

- Iimited vertical resolution
 - integration step (iterations)
 - interpolation between vertical layers
 - supplementary atmosphere over upper limit
- interpolation at horizontal layer
- time interpolation of parameters
 - for observation epoch
 - 3h/6h/12h forecast runs

Interpolation in NWP model

- Iimited vertical resolution
 - integration step (iterations)
 - interpolation between vertical layers
 - supplementary atmosphere over upper limit
- interpolation at horizontal layer
- time interpolation of parameters
 - for observation epoch
 - 3h/6h/12h forecast runs

Interpolation in NWP model

- Iimited vertical resolution
 - integration step (iterations)
 - interpolation between vertical layers
 - supplementary atmosphere over upper limit
- interpolation at horizontal layer
- time interpolation of parameters
 - for observation epoch
 - 3h/6h/12h forecast runs

HORIZONTAL

NEAREST

$$P = P(d_i)$$
, where $d_i = min$

WEIGHTED AVERAGE

$$P = \frac{\sum_{i=1}^{n} P_i w_i}{\sum_{i=1}^{n} w_i}, \text{ where } w_i = [(x - x_i)^2 + (y - y_i)^2]^{-2}$$

SPLINE

$$P = \sum_{i=1}^{4} \sum_{i=1}^{4} a_{ij} x_i$$

HORIZONTAL

NEAREST

$$P = P(d_i)$$
, where $d_i = min$

WEIGHTED AVERAGE

$$P = \frac{\sum_{i=1}^{n} P_i w_i}{\sum_{i=1}^{n} w_i}, \text{ where } w_i = [(x - x_i)^2 + (y - y_i)^2]^{-2}$$

 _

0

SPLINE

$$P = \sum_{i=1}^{4} \sum_{j=1}^{4} a_{ij} x_i y$$

HORIZONTAL

NEAREST

$$P = P(d_i)$$
, where $d_i = min$

WEIGHTED AVERAGE

$$P = \frac{\sum_{i=1}^{n} P_i w_i}{\sum_{i=1}^{n} w_i}, \text{ where } w_i = [(x - x_i)^2 + (y - y_i)^2]^{-2}$$

SPLINE

$$P = \sum_{i=1}^{4} \sum_{j=1}^{4} a_{ij} x_{i} y_{j}$$

HORIZONTAL

NFAREST

$$P = P(d_i)$$
, where $d_i = min$

WFIGHTED AVERAGE

$$P = \frac{\sum_{i=1}^{n} P_i w_i}{\sum_{i=1}^{n} w_i}, \text{ where } w_i = [(x - x_i)^2 + (y - y_i)^2]^{-2}$$

SPLINE

$$P = \sum_{i=1}^{4} \sum_{j=1}^{4} a_{ij} x_i y_j$$

VERTICAL

LINEAR

$$T = T_i - d_T(h_i - h)$$

EXPONENTIAL

$$P = P_i \left(\frac{T_i + d_T(h_i - h)}{T_i} \right)^{\frac{g \cdot M_d}{R \cdot d_T}}$$

LOGARITHM

$$logP = logP_{i} + \frac{h_{i} - h}{18400 \left(1 + \frac{T + T_{i}}{546}\right)}$$

Refractivity coefficients

$$N = (n-1) \cdot 10^6 = \frac{k_1}{T} + \frac{P}{T} + \frac{k_2}{T} + \frac{e}{T^2} \qquad k_2' = k_2 - k_1 \frac{M_w}{M_d}$$

	<i>k</i> ₁	k ₂	<i>k</i> ₃
Coefficient	$[10^{-2}K/hPa]$	[10 ⁻² K/hPa]	[10 ³ K ² / hPa]
Smith and Weintraub (1953)	77.61	72.0	375
Boudouris (1963)	77.631	72.006	375.031
Thayer (1974)	77.60	64.80	377.6
Bevis et al. (1994)	77.60	70.4	373.9
Rueger (2002) 'best aver'	77.689	71.295	375.406
Rueger (2002) 'best avail'	77.695	71.97	375.406
		4 🗆 🕨	> < 2 > < 2 >

Raytracing strategies

	Raytracer	Atmospheric model	Limit [km]	Parameters	Solution
Ground-based					
Hobiger et al. (2008)	KARAT	ECMWF + US 76	86	T, RH: linear P: logarithmically	2D / 3D
Urquhart et al. (2012)	UNB	ECMWF + CIRA 86	100	T, Q: linear P: logarithmically	2D / 3D
Nafisi et al. (2012)	VIE	ECMWF + US 76	76	T: linear P, e: exponential	2D / 3D
Gegout et al. (2014)	GFZ	ECMWF	150	N: log-linear	2D
Zus et al. (2010)	Horizon	ECMWF	80	N: exponential	2D

- Raytracing is a complex process.
- It combines both, meteorological and geodetic reference systems.
- Oan be solved in exact or approximate way.
- It allows to determine non-traditional parameters:
 - slant and zenith delays,
 - bending angle.

- Raytracing is a complex process.
- It combines both, meteorological and geodetic reference systems.
- Oan be solved in exact or approximate way
- It allows to determine non-traditional parameters:
 - slant and zenith delays,
 - bending angle.

- Raytracing is a complex process.
- It combines both, meteorological and geodetic reference systems.
- Can be solved in exact or approximate way.
- It allows to determine non-traditional parameters:
 - slant and zenith delays,
 - bending angle.

- Raytracing is a complex process.
- It combines both, meteorological and geodetic reference systems.
- Can be solved in exact or approximate way.
- It allows to determine non-traditional parameters:
 - slant and zenith delays,
 - bending angle.

Thank you for your attention

witold.rohm@up.wroc.pl

